
TARF: A Trust-Aware Routing Framework for
Wireless Sensor Networks�

Guoxing Zhan1, Weisong Shi1, and Julia Deng2

1 Wayne State University, 5143 Cass Avenue, Detroit, MI 48202, USA
{gxzhan,weisong}@wayne.edu

2 Intelligent Automation Inc., 15400 Calhoun, Rockville, MD 20855, USA
hdeng@i-a-i.com

Abstract. Multi-hop routing in wireless sensor networks (WSNs) offers little
protection against deception through replaying routing information. This defect
can be taken advantage of by an adversary to misdirect significant network traf-
fic, resulting in disastrous consequences. It cannot be solved solely by encryp-
tion or authentication techniques. To secure multi-hop routing in WSNs against
intruders exploiting the replay of routing information, we propose TARF, a trust-
aware routing framework for WSNs. Not only does TARF significantly reduce
negative impacts from these attackers, it is also energy-efficient with acceptable
overhead. It incorporates the trustworthiness of nodes into routing decisions and
allows a node to circumvent an adversary misdirecting considerable traffic with
a forged identity attained through replaying. Both our empirical and simulated
experimental results indicate that TARF satisfactorily performs routing and is re-
silient against attacks by exploiting the replay of routing information.

1 Introduction

Wireless sensor networks (WSNs) are ideal candidates for applications such as military
surveillance and forest fire monitoring to report detected events of interest. With a nar-
row radio communication range, a sensor node wirelessly sends messages to a base sta-
tion via a multi-hop path. However, the multi-hop routing of WSNs often becomes the
target of malicious attacks. In such an attack, the attacker may tamper nodes physically,
create traffic collision with seemingly valid transmission, drop or misdirect messages
in routes, or jam the communication channel by creating radio interference [18]. This
paper focuses on the kind of attack in which an adversary misdirects packets by identity
deception through replaying routing information. With such identity deception, the ad-
versary is capable of launching harmful and hard-to-detect attacks to misdirect traffic,
such as selective forwarding as well as wormhole and sinkhole attacks [8].

As an effective and easy-to-implement type of attack, a malicious node simply re-
plays all the routing information sent from another valid node to forge the latter node’s
identity, thus misdirecting the network traffic. Those packets, including their original
headers, are replayed without any modification. Even if this malicious node cannot
directly overhear the valid node’s wireless transmission, it can collude with other mali-
cious nodes to receive those routing packets and replay them somewhere far away from

� This work is supported in part by NSF grant CNS-0721456.

J. Sá Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 65–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



66 G. Zhan, W. Shi, and J. Deng

the original valid node, which is known as a wormhole attack. Since a node in a WSN
usually relies solely on the packets received to know about the sender’s identity, replay-
ing routing packets allows the malicious node to forge the identity of this valid node.
After “stealing” that valid identity, this malicious node is able to misdirect the network
traffic. In a selective forwarding attack, it may drop packets received, forward packets to
another node not supposed to be in the routing path, or even form a transmission loop
through which packets are passed among a few malicious nodes infinitely. It is often
difficult to know whether a node forwards received packets correctly even with over-
hearing techniques [8]. Sinkhole attacks are another kind of attacks that can be launched
after stealing a valid identity. In a sinkhole attack, a malicious node may claim itself to
be a base station through replaying all the packets from a real base station. Such a fake
base station could lure more than half the traffic, creating a “black hole”.

Unfortunately, most existing routing protocols for WSNs either focus on energy ef-
ficiency [1] assuming that each node is honest with its identity, or they try to exclude
unauthorized participation by encrypting data and authenticating packets. Examples of
these encryption and authentication schemes for WSNs include TinySec [7], Spins [14],
TinyPK [16], and TinyECC [10]. Admittedly, it is important to consider efficient energy
usage for battery-powered sensor nodes and the robustness of routing under topological
changes and common faults in a wild environment. However, it is also significant to
incorporate security as one of the most important goals; meanwhile, even with perfect
encryption and authentication, by replaying routing information, a malicious node can
still participate in the network using another valid node’s identity.

In contrast, trust management [2] has been introduced into peer-to-peer networks and
general ad hoc networks to support decision-making [6,15], improve security [3,11],
and promote node collaboration [5] and resource sharing [9]. Basically, trust manage-
ment assigns each node a trust value according to its past performance. These studies
target general ad hoc networks and peer-to-peer networks but not resource-constrained
WSNs. Additionally, they do not address attacks arising from the replay of routing infor-
mation. With a similar idea, S. Ganeriwal, L. Balzano, and M. Srivastava also proposed
a reputation-based approach to detect uncooperative nodes in WSNs [4]; however, they
do not address the attacks by exploiting the replay of routing information. The authors
also studied the trustworthiness of the data collected by WSNs [19].

At this point, to fight against the “identity theft” threat arising from packet replaying,
we introduce trust management into WSNs, proposing TARF - a trust-aware routing
framework for wireless sensor networks. TARF identifies those malicious nodes that
misuse “stolen” identities to misdirect packets by their low trustworthiness, thus helping
nodes circumvent those attackers in their routing paths. We present the assumptions
and goals of this work in Section 2, the detailed design of TARF in Section 3, our
implementation of TARF in Section 4 and simulation results in Section 5. Finally, we
conclude this work in Section 6.

2 Assumptions and Goals

We target secure routing for data collection tasks, which are one of the most fundamen-
tal functions of WSNs. In a data collection task, sensor nodes send sampled data to a



TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 67

Node

Base station

Node

Base station

Fake base station

(a) (b)

Fig. 1. Multi-hop routing: (a) normal scenarios; (b) a fake base station attracts traffic

remote base station with the aid of intermediate nodes, as in Figure 1(a). It is possible
for an adversary to replay all the packets from a base station and thus to forge the iden-
tity of the base station. Such deception could result in the following situation: a large
amount of packets are attracted to this fake base station and are never delivered to the
real base station (see Figure 1(b)).

Though there could be more than one base station, our routing approach is not af-
fected by the number of base stations; to simplify our discussion, we will assume that
there is only one base station. Further, we assume no data aggregation is involved.
Nonetheless, our approach can still be applied to static-cluster-based WSNs, where data
are aggregated by static clusters before being relayed. In a static-cluster-based WSN,
cluster headers themselves form a sub-network; after certain data reach a cluster header,
the aggregated data will be routed to a base station only through such a sub-network
consisting of cluster headers. Our framework can then be applied to this sub-network to
achieve secure routing for static-cluster-based WSNs.

Additionally, we make certain assumptions regarding the format of packets in TARF.
We assume all data packets and routing packets, including their packet headers, are
authenticated; a packet can be forwarded only after its authenticity is verified. Whether
data encryption is implemented can be decided by the application. Every data packet is
assumed to have at least the following fields: the sender id, the sender sequence number,
the next-hop node id (the receiver in this one-hop transmission), the source id (the node
that initiates the data), and the source’s sequence number. We insist that the source
node’s information should be included for the following reasons. First, that allows the
base station to identify which data packets are initiated but undelivered; Second, a WSN
cannot afford the overhead to transmit all the one-hop information to the base station.
Regarding routing packets, they should have at least the following fields: the source id,
the source’s sequence number, and the next-hop id. In addition, we assume that after
receiving a data packet, a node will send out an acknowledgement packet.

Next, we present the goals of TARF.

High Throughput: Throughput is defined as the ratio of the number of data packets
delivered to the base station to the number of all sampled data packets. Note that single-
hop re-transmission may happen, and that identical packets repeatedly transmitted are



68 G. Zhan, W. Shi, and J. Deng

considered as one packet as far as throughput is concerned. Instead of any specific data,
users usually care much more about throughput. Here we regard high throughput as one
of our most important goals.

Energy Efficiency: Efficient energy usage is significant for battery-powered sensor
nodes, and data transmission accounts for a major portion of energy consumption.
We evaluate energy efficiency by the average energy cost to successfully deliver a
unit-sized data packet from a source node to the base station. Note that link-level re-
transmission should be given enough attention when considering energy cost since each
re-transmission causes a noticeable increase in energy consumption. If every node in a
WSN consumes approximately the same energy to transmit a unit-sized data packet,
we can use another metric hop-per-delivery to evaluate energy efficiency. Under that
assumption, the energy consumption depends on the number of hops, i.e. the number
of one-hop transmissions occurring. To evaluate how efficiently energy is used, we can
measure the average hops per delivery, i.e., the number of all hops divided by the num-
ber of all delivered data packets, abbreviated as hop-per-delivery.

Excellent Scalability & Adaptability: TARF should work well with WSNs of large
magnitude under highly dynamic contexts.

Here we do not include other aspects such as latency, load balance, or fairness. Low
latency, balanced network load, and good fairness requirements can be enforced in spe-
cific routing protocols built on top of TARF.

3 Design of TARF

TARF secures the multi-hop routing in WSNs against intruders exploiting the replay
of routing information by evaluating the trustworthiness of neighboring nodes. It iden-
tifies such intruders that misdirect noticeable network traffic by their low trustworthi-
ness and routes data through paths circumventing those intruders to achieve satisfactory
throughput. TARF is also energy-efficient, highly scalable, and well adaptable. Before
introducing the detailed design, we first introduce several necessary notions here.

Neighbor: For a node N , a neighbor (neighboring node) of N is a node that is reachable
from N with one-hop wireless transmission.

Trust level: For a node N , the trust level of a neighbor is a decimal number in [0, 1],
representing N ’s opinion of that neighbor’s level of trustworthiness. Specifically, the
trust level of the neighbor is N ’s estimation of the probability that this neighbor cor-
rectly delivers data received to the base station. That trust level is denoted as T in this
paper.

Energy cost: For a node N , the energy cost of a neighbor is the average energy cost
to successfully deliver a unit-sized data packet with this neighbor as its next-hop node,
from N to the base station. That energy cost is denoted as E in this paper.

3.1 Overview

TARF integrates trustworthiness and energy efficiency in making routing decisions. For
a node N to route a data packet to the base station, N only needs to decide to which



TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 69

neighboring node it should forward the data packet. That chosen neighbor is N ’s next-
hop node. Once the data packet is forwarded to that next-hop node, the remaining task
to deliver the data to the base station is fully delegated to it, and N is totally unaware
of what routing decision its next-hop node makes. To choose its next-hop node, N
considers both the trustworthiness and the energy efficiency of its neighbors. For that,
N maintains a neighborhood table with trust level values and energy cost values for
certain known neighbors. It is sometimes necessary to delete some neighbors’ entries
to keep the table size acceptable. Maintaining a neighborhood table with acceptable
overhead proved possible in [17]; the same technique can be used by TARF.

In TARF, in addition to data packet transmission, there are two types of routing in-
formation that need to be exchanged: broadcast messages from the base station about
undelivered data packets and energy cost report messages from each node. Neither mes-
sage needs acknowledgement. A broadcast message from the base station is broadcast
to the whole network; each node receiving a fresh broadcast message from the base
station will broadcast it to all its neighbors once. The freshness of a broadcast message
is ensured by its field of source sequence number. The other type of exchanged routing
information is the energy cost report message from each node, which is broadcast to
only its neighbors once. Additionally, any node receiving such an energy cost report
message will not forward it.

For each node N in a WSN, to maintain such a neighborhood table with trust level
values and energy cost values for certain known neighbors, two components, Energy-
Watcher and TrustManager, run on the node (Figure 2). EnergyWatcher is responsible
for recording the energy cost for each known neighbor, based on N ’s observation of
one-hop transmission to reach its neighbors and the energy cost report from those neigh-
bors. TrustManager is responsible for tracking trust level values of neighbors based on
network loop discovery and broadcast messages from the base station about undelivered
data packets. Once N is able to decide its next-hop neighbor according to its neighbor-
hood table, it sends out its energy report message: it broadcasts to all its neighbors its
energy cost to deliver a packet from the node to the base station. The energy cost is
computed as in Section 3.3 by EnergyWatcher. Such an energy cost report also serves
as the input of its receivers’ EnergyWatcher.

Neighborhood

Table

TrustManager

Base Station 

Broadcast

Energy Cost 

Report

Network Loop 

Discovery

EnergyWatcher

One-hop

Delivery

Neighbor 

Energy Cost

Neighbor Trust 

Level

Next-hop

Selection

Energy Cost 

Report

Fig. 2. Each node selects a next-hop node based on its neighborhood table, and broadcast its
energy cost within its neighborhood. To maintain this neighborhood table, EnergyWatcher and
TrustManager on the node keep track of related events (on the left) to record the energy cost and
the trust level values of its neighbors.



70 G. Zhan, W. Shi, and J. Deng

3.2 Routing Procedure

TARF, as with many other routing protocols, runs as a periodic service. The length of
that period determines how frequently routing information is exchanged and updated.
At the beginning of each period, the base station broadcasts the information about un-
delivered data packets during the past few periods to the whole network once, which
triggers the exchange of routing information in this new period. Whenever a node re-
ceives such a broadcast message from the base station, it knows that the most recent
period has ended and a new period has just started. In this way, no time synchroniza-
tion is required for a node to keep track of the beginning or ending of a period. During
each period, the EnergyWatcher on a node monitors energy consumption of one-hop
transmission to its neighbors and processes energy cost reports from those neighbors
to maintain energy cost entries in its neighborhood table; its TrustManager also keeps
track of network loops and processes broadcast messages from the base station about
undelivered data to maintain trust level entries in its neighborhood table.

To maintain the stability of its routing path, a node may retain the same next-hop
node until the next fresh broadcast message from the base station occurs. Meanwhile,
to reduce traffic, its energy cost report could be configured to not occur again until the
next fresh broadcast from the base station. If a node does not change its next-hop node
selection until the next broadcast from the base station, that guarantees all paths to be
loop-free, as can be deducted from the procedure of next-hop node selection. However,
as noted in our experiments, that would lead to slow improvement in routing paths.
Therefore, we allow a node to change its next-hop selection in a period only when its
current next-hop is not responding correctly.

Next, we introduce the structure and exchange of routing information as well as how
nodes make routing decisions in TARF.

Structure and Exchange of Routing Information: A broadcast message from the
base station fits into a fixed number of packets; in our implementation, it fits into one
byte. Such a message consists of a few pairs of <the node id of a source node, an un-
delivered sequence interval [a, b] with a significant length>. To reduce overhead, only
a few such pairs are selected to be broadcast. The undelivered sequence interval [a, b]
is explained as follows: the base station searches the source sequence numbers received
in the past few periods, identifies which source sequence numbers for the source node
with this id are missing, and chooses certain significant interval [a, b] of missing source
sequence numbers as an undelivered sequence interval. For example, the base station
may have all the source sequence numbers for the source node 2 as {109, 110, 111,
150,151} in the past two periods. Then [112, 149] is an undelivered sequence interval.
Since the base station is usually connected to a powerful platform such as a desktop, a
program can be developed on that powerful platform to assist in recording all the source
sequence numbers and finding undelivered sequence intervals. The reason for searching
over more than one period is to identify as many undelivered data packets as possible.
To illustrate that, consider this example: suppose the source sequence numbers of deliv-
ered data packets from node 2 are {1, 2, 3} for the 1st period and {200, 201, 203} for
the 2nd period; then simply searching over a single period would not discover the un-
delivered packets unless every node is required to send a fixed number of data packets
over each period.



TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 71

Accordingly, each node in the network stores a table of <the node id of a source
node, a forwarded sequence interval [a, b] with a significant length> in the past few
periods. The data packets with the source node and the sequence numbers falling in this
forwarded sequence interval [a, b] have already been forwarded by this node. When the
node receives a broadcast message with undelivered sequence intervals, its TrustMan-
ager will be able to identify which data packets forwarded by this node are not delivered
to the base station. Considering the overhead to store such a table, old entries will be
deleted once the table is full.

Once a fresh broadcast message from the base station is received, a node immedi-
ately invalidates all the existing energy cost entries: it is ready to receive a new energy
report from its neighbors and choose its new next-hop node afterwards. Also, it is go-
ing to select a node either after a timeout is reached or after it has received an energy
cost report from some highly trusted candidates with acceptable energy cost. A node
immediately broadcasts its energy cost to its neighbors only after it has selected a new
next-hop node. That energy cost is computed by its EnergyWatcher (see Section 3.3).
A natural question is which node starts reporting its energy cost first. For that, note that
when the base station is sending a broadcast message, a side effect is that its neighbors
receiving that message will also regard this as an energy report: the base station needs
0 amount of energy to reach itself. As long as the original base station is faithful, it will
be viewed as a trustworthy candidate by TrustManager on the neighbors of the base
station. Therefore, those neighbors will be the first nodes to decide their next-hop node,
which is the base station; they will start reporting their energy cost once that decision is
made.

Route Selection: Now, we introduce how TARF decides routes in a WSN. Each node
N relies on its neighborhood table to select an optimal route, considering both energy
consumption and reliability. TARF makes good efforts in excluding those nodes that
misdirect traffic by exploiting the replay of routing information.

For a node N to select a route for delivering data to the base station, N will select
an optimal next-hop node from its neighbors based on trust level and energy cost and
forward the data to the chosen next-hop node immediately. The neighbors with trust
levels below a certain threshold will be excluded from being considered as candidates.
Among the remaining known neighbors, N will select as its next-hop node a neighbor
b with the minimal value of ENb

TNb
, with ENb and TNb being b’s energy cost and trust

level value in the neighborhood table respectively (see Section 3.3, 3.4). Basically,
ENb reflects the energy cost of delivering a packet to the base station from N assuming
that all the nodes in the route are honest; 1

TNb
approximately reflects the number of the

needed attempts to send a packet from N to the base station via multiple hops before
such an attempt succeeds, considering the trust level of b. Thus, comparing the values
of ENb

TNb
among N ’s neighbors identifies a candidate with a minimal combined cost of

energy and trustworthiness.
The remaining delivery task is fully delegated to that selected next-hop neighbor,

and N is totally unaware of what routing decision its chosen neighbor is going to make.
Next, the chosen node will repeat what N has done, i.e., delegating the left routing
task to its own chosen next-hop neighbor. In this way, instead of finding out a complete
path to the base station, each node is only responsible for choosing its next-hop node,



72 G. Zhan, W. Shi, and J. Deng

Base Station

Sensor node

Fig. 3. Routing illustration

thus saving considerable cost in computation and routing information exchange. As an
example shown in Figure 3, node a is trying to forward a packet to the base station. After
comparing both the trust level and energy cost among its neighbors 1, 2 and b, a decides
that b is the most promising next-hop node for data delivery and forwards the data packet
to b immediately. b is free to make its own decision for routing the packet to the base
station. b decides that its neighbor c is a better candidate than its neighbor 3. After that,
the task is delegated to c, and c continues to delegate the job to d. Finally, d delivers the
packet to the base station. Observe that in an ideal misbehavior-free environment, all
nodes are absolutely faithful, and each node will choose a neighbor through which the
routing path is optimized in terms of energy; thus, an energy-driven route is achieved.
If we further assume that the one-hop transmission power of a unit-sized packet is the
same for each node, the selected route will be the classical shortest path.

3.3 EnergyWatcher

Here we describe how a node N ’s EnergyWatcher computes the energy cost ENb for
its neighbor b in N ’s neighborhood table and how N decides its own energy cost EN .
Before going further, we will clarify some notations. ENb mentioned is the average en-
ergy cost of successfully delivering a unit-sized data packet from N to the base station,
with b as N ’s next-hop node being responsible for the remaining route. Here, one-hop
re-transmission may occur until the acknowledgement is received or the number of re-
transmissions reaches a certain threshold. The cost caused by one-hop re-transmissions
should be included when computing ENb. Suppose N decides that A should be its
next-hop node after comparing energy cost and trust level. Then N ’s energy cost is
EN = ENA. Denote EN→b as the average energy cost of successfully delivering a
data packet from N to its neighbor b with one hop. Note that the re-transmission cost
needs to be considered. With the above notations, it is straightforward to establish the
following relation:

ENb = EN→b + Eb

Since each known neighbor b of N is supposed to broadcast its own energy cost Eb to
N , to compute ENb, N still needs to know the value EN→b, i.e., the average energy cost
of successfully delivering a data packet from N to its neighbor b with one hop. For that,



TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 73

assuming that the endings (being acknowledged or not) of one-hop transmissions from
N to b are independent with the same probability psucc of being acknowledged, we first
compute the average number of one-hop sendings needed before the acknowledgement
is received as follows:

∞∑

i=1

i · psucc · (1 − psucc)i−1 =
1

psucc

Denote Eunit as the energy cost for node N to send a unit-sized data packet once
regardless of whether it is received or not. Then we have

ENb =
Eunit

psucc
+ Eb

The remaining job for computing ENb is to get the probability psucc that a one-hop
transmission is acknowledged. Considering the variable wireless connection among
wireless sensor nodes, we do not use the simplistic averaging method to compute psucc.
Instead, after each transmission from N to b, N ’s EnergyWatcher will update psucc

based on whether that transmission is acknowledged or not with a weighted averaging
technique. We use a binary variable Ack to record the result of current transmission: 1 if
an acknowledgement is received; otherwise, 0. Given Ack and the last probability value
of an acknowledged transmission pold succ, TARF uses a weighted average of Ack and
pold succ as the new probability value pnew succ:

pnew succ = (1 − w) × pold succ + w × Ack, w ∈ (0, 1),

where w can be chosen by specific protocols.

3.4 TrustManager

A node N ’s TrustManager decides the trust level of each neighbor based on the fol-
lowing events: discovery of network loops, and broadcast from the base station about
undelivered data packets. For each neighbor b of N , TNb denotes the trust level of b in
N ’s neighborhood table. At the beginning, each neighbor is given a neutral trust level
0.5. After any of those events occurs, the relevant neighbors’ trust levels are updated.

To detect loops, the TrustManager on N reuses the table of <the node id of a source
node, a forwarded sequence interval [a, b] with a significant length> (see Section 3.2)
in the past few periods. If N finds that a received data packet is already in that record
table, not only will the packet be discarded, but the TrustManager on N also degrades
its next-hop node’s trust level. If that next-hop node is b, then Told Nb is the latest trust
level value of b. We use a binary variable Loop to record the result of loop discovery: 1
if a loop is received; 0 otherwise. After the degradation, as in the update of energy cost,
the new trust level of b is

Tnew Nb = (1 − w) × Told Nb + w × Loop, w ∈ (0, 1),

where w can be chosen by specific applications.



74 G. Zhan, W. Shi, and J. Deng

Once a loop has been detected by N for a few times so that the trust level of the
next-hop node is too low, N will change its next-hop selection; thus, that loop is broken.
Though N can not tell which node should be held responsible for the occurrence of a
loop, degrading its next-hop node’s trust level gradually leads to the breaking of the
loop.

On the other hand, to detect the traffic misdirection by nodes exploiting the replay of
routing information, TrustManager on N compares N’s stored table of <node id of a
source node, forwarded sequence interval [a, b] with a significant length> recorded in
the past few periods with the broadcast messages from the base station about undeliv-
ered data. It computes the ratio of the number of successfully delivered packets which
are forwarded by this node to the number of those forwarded data packets, denoted as
DeliveryRatio. Then N ’s TrustManager updates its next-hop node b’s trust level as
follows:

Tnew Nb = (1 − w) × Told Nb + w × DeliveryRatio, w ∈ (0, 1),

Now, suppose an adversary M forges the identity of the base station by replaying all
the routing packets from the base station. At first, it is able to deceive its neighbors into
believing that M is a base station; as a result, M may attract a large amount of data
packets, which never reach the base station. However, after the base station broadcasts
the information about those undelivered packets, M ’s neighbors will downgrade M ’s
trust level values in their neighborhood table. Note that M is only capable of replaying
but is not capable of manipulating or generating authenticated broadcast messages, and
that M usually cannot prevent other nodes from receiving a broadcast message from
the base station. As time elapses, M ’s neighbors will start realizing that M is not trust-
worthy and will look for other next-hop candidates that are more reliable. Similarly, if
M forges the identity of another valid appealing node, M ’s neighbors will gradually
realize that M is not reliable.

4 Implementation and Empirical Evaluation

We have implemented a protocol based on TARF in TinyOS 1.x, which currently runs
on mica2 motes. Both the authentication and encryption of packets reuse the implemen-
tation of TinySec [7]: TinySec uses a CBC mode encryption scheme with Skipjack as
the block cipher and an authentication scheme based on a four-byte message authentica-
tion code (MAC) computed by the CBC-MAC construction procedure. The MAC field
is computed over the whole message including all the headers; it also serves as the CRC
field of the packet. Data encryption can be disabled. In a routing packet, the next-hop
id is replaced by a neighborhood broadcast address or a network broadcast address to
indicate that it is a neighborhood or whole network broadcast. The acknowledgement of
data packets is enabled. Considering the fact that floating-point computation is not sup-
ported by sensor hardware, the implementation uses an integer in [0, 100] to represent
trust level; the update of energy cost and trust level values is also implemented using
integer arithmetics.

This implemented TARF protocol requires moderate program storage and memory
usage. For comparison, we list the ROM size and RAM size requirement for this pro-
tocol and two other protocols on mica nodes in Table 1. The two other protocols are



TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 75

Table 1. Size of protocol components implemented

Protocol Authentication&Encryption ROM (bytes) RAM (bytes)
TARF TinySec 20912 1464
Route TinySec 20696 1048

MintRoute TinySec 22554 1990

named Route and MintRoute according to their directory name under TinyOS 1.x. Both
Route and MintRoute were the “standard” routing protocols in TinyOS 1.x and make
route decisions based on both link quality estimation and number of hops. Neither of
these original protocols provides encryption or authentication; to compare on a fair ba-
sis, we also enabled the encryption and authentication mode of TinySec for Route and
MintRoute. TinySec occupies 728 bytes of RAM and 7146 bytes of ROM [7]. Simi-
larly to Route and MintRoute, this TARF protocol adopts energy-efficient routes in a
misbehavior-free environment. However, with a comparable size, it also supports the
circumvention of adversaries exploiting the replay of routing information, which is not
provided by Route or MintRoute. Further, our experience shows that it is easy to incor-
porate this TARF protocol into most applications. As an example, we re-implemented
the Surge application in the TinyOS 1.x directory with this TARF protocol. The program
has a size comparable to that of the Surge implemented using Route or MintRoute.

To evaluate how effective TARF is against deception through replaying routing in-
formation in the real world, we uploaded programs onto Motelab [13] at Harvard Uni-
versity. As a public test bed of wireless sensor networks, at the time of our experiments,
184 TMote Sky sensor motes were deployed at 3 floors. These nodes are distributed
among many rooms of the building, with an approximate indoor transmission of 100
meters. Approximately 14 nodes were removed, and nearly 50 nodes were disabled.
Motelab switched its serial forwarder protocol from TinyOS 1.x to TinyOS 2.x and
was equipped with TMote only Tmote Sky motes. Due to the unavailability of Tiny-
Sec on TMote SKy nodes, we did not include authentication or encryption from Tiny-
Sec in the uploaded programs. Further, considering the availability of routing protocols
on TinyOS 2.x, we compared our TinyOS 2.x version of TARF with the collection
tree routing protocol (CTP), which mainly employs link quality estimation in choos-
ing next-hop nodes. Both protocols were integrated into a data collection application -
MultihopOscilloscope, which is named after its directory name in TinyOS 2.x. We con-
figured the MultihopOscilloscope to send out 5 samples in a single data packet every 5
seconds. The routing update occurred every 50 seconds. Because of the limited quota
assigned by Motelab, our programs lasted maximally 30 minutes. Among all the nodes,
one was chosen to be the base station. Another node was programmed to be a fake base
station: it broadcast as if it were a base station but never delivered the received data to
the real base station. The many experiments we executed indicate that our TARF pro-
tocol achieves at least 30% higher throughput than CPT when there is an “attractive”
fake base station. Some fake base stations are not able to misdirect much traffic because
they have a poor wireless connection with their neighbors and do not look “appealing”.



76 G. Zhan, W. Shi, and J. Deng

In one experiment (Figure 4(a)), all nodes on the three floors were supposed to de-
liver data to node 9 (the base station); node 15 (fake base station) replayed all the rout-
ing packets from the base station. By counting the data packets received at the real base
station, TARF had approximately a 60% higher throughput than CTP . In another ex-
periment (Figure 4(b)), only the nodes on the first floor (56 nodes totally) sent data to
node 9 (the base station), and node 27 (fake base station) replayed the routing packets
from the base station. As a result, TARF had approximately a 40% higher throughput
than CTP .

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (minute)

N
u

m
b

e
r 

o
f 

d
e

liv
e

re
d

 m
e

s
s
a

g
e

s

TARF

CTP

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

Time (minute)

N
u

m
b

e
r 

o
f 

d
e

liv
e

re
d

 m
e

s
s
a

g
e

s

TARF

CTP

(a) (b)

Fig. 4. With a fake base at Motelab, (a) TARF had approximately a 60% higher throughput than
CTP among 3 floors; (b) TARF had approximately a 40% higher throughput than CTP at a
single floor.

We also recorded the number of redundant data packets received by the base station.
It turns out that both TARF and CTP had redundancy ratios at no more than 2%. Though
both CTP and TARF suppress redundant packets, a packet might be received more than
once by the base station because an acknowledgment is lost when the route changes.

5 Simulation and Evaluation

To further evaluate the efficacy of TARF in terms of energy efficiency and through-
put, we have developed a reconfigurable emulator of wireless sensor networks on a
two-dimensional plane with Matlab [12]. To effectively simulate a WSN, this emula-
tor uses the object-oriented technique to construct two classes of objects: WSNMAN-
AGER and NODE, to represent the whole network and a sensor node. The interaction
between nodes are emulated through event passing. The routing function for a node can
be rewritten to adopt different routing protocols; different maps can also be ported into
this simulator. To simulate the unreliable wireless transmission, the outcome of one-hop
packet transmission is decided by the following model: suppose a node A is wirelessly
transmitting a packet to node B, the probability for B to successfully receive such a
packet is assumed to be

1 − (min(dist, MAX DIST )/MAX DIST )8,



TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 77

where dist is the distance from A to B, and MAX DIST is the maximal transmission
range. In our experiment, MAX DIST is defined as 100m, and 35 nodes are randomly
distributed within a 300*300 rectangular area. All the nodes have the same power level
and the same maximal transmission range of 100m. A base station is placed at the origin
[0, 0]. We simulate the sensor network in 60 consecutive periods; each node samples
data 6 times in each period.

The performance of TARF is compared to that proposed in [17] by Alec Woo, Ter-
ence Tong and David Culler. In that project, link connectivity is used as a cost metric for
routing, which is found to be more cost-effective than the well-known shortest path pro-
tocol. We will simply refer to the latter protocol as link-connectivity. In our simulation
experiments, we compare TARF with a simulated version of link-connectivity. As we
will see from the experiment results, with the existence of misbehaviors, the throughput
in TARF is often much higher than that in link-connectivity; the hop-per-delivery in
TARF is generally at least comparable to that in the link connectivity protocol.

We compare TARF and link-connectivity under the following scenarios: (1) no nodes
misbehaves intentionally; (2) certain nodes forge the identity of the based station by
replaying broadcast messages; (3) a set of nodes colludes to form a forwarding loop;
and (4) a set of nodes drops received data packets.

Under scenario (1) without misbehaving nodes, the two protocols have comparable
performance in terms of throughput and hop-per-delivery. Figure 5 shows such an ex-
ample. Under a misbehavior-free environment, according to the TARF protocol, a node
may still perceive its neighbors as having different trust level, due to the fact that the
node can not well distinguish between malicious behavior and failed delivery due to
environmental effects. However, such mis-perception of trust does not compromise the
performance of TARF.

Under scenario (2), certain malicious nodes become fake base stations through re-
playing messages originated from the base station. With the link connectivity proto-
col, a significant portion of traffic is attracted to the fake base. However, with TARF,
most packets are able to select a route circumventing those fake bases. When there
are forged base stations, TARF tends to show much better throughput than the link

0 10 20 30 40 50 60
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time

T
h
ro

u
g
h
p
u
t

TARF

Link-connectivity

0 10 20 30 40 50 60
3.5

4

4.5

5

5.5

6

Time

H
o
p
-p

e
r-

d
e
liv

e
ry

TARF

Link-connectivity

(a) (b)

Fig. 5. Under misbehavior-free environment, TARF and link-connectivity have comparable per-
formance in (a) throughput, and (b) hop-per-delivery.



78 G. Zhan, W. Shi, and J. Deng

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

T
h
ro

u
g
h
p
u
t

TARF

Link-connectivity

0 10 20 30 40 50 60
4

6

8

10

12

14

Time

H
o
p
-p

e
r-

d
e
liv

e
ry

TARF

Link-connectivity

(a) (b)

Fig. 6. With a fake base, (a) TARF has 5 times the throughput in link-connectivity; (b) TARF has
less than 50% hop-per-delivery in link-connectivity.

connectivity protocol, and the hop-per-delivery in TARF is much less than that in the
link-connectivity protocol. In one of our experiments with a fake base station, as indi-
cated in Figure 6, TARF reaches roughly 5 times the throughput in the link-connectivity
protocol, while the hop-per-delivery in TARF is less than 50% that in link-connectivity.

Under scenario (3), a loop of colluding nodes intercepts many packets. The through-
put in TARF is generally higher than that in link-connectivity; the hop-per-delivery in
the two protocols gradually become comparable. In one experiment, as shown in Fig-
ure 7, 5 out of 35 nodes are selected to form a network loop. Any data forwarded to
one of these 6 nodes would not be able to arrive at the base station. As in Figure 7, the
throughput in TARF is around 70% higher than that in the link connectivity protocol;
their hop-per-delivery gradually becomes comparable.

Under scenario (4), a set of nodes drops any received data packets. In our experiment,
6 nodes drop data forwarded to them. As indicated by Figure 8, the throughput in TARF

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

T
h
ro

u
g
h
p
u
t TARF

Link-connectivity

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Time

H
o
p
-p

e
r-

d
e
liv

e
ry TARF

Link-connectivity

(a) (b)

Fig. 7. With a loop consisting of 14% nodes, (a) TARF has a higher throughput than link-
connectivity; (b) gradually, TARF and link-connectivity have comparable hop-per-delivery.



TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 79

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time

T
h
ro

u
g
h
p
u
t

TARF

Link-connectivity

0 10 20 30 40 50 60
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

Time

H
o
p
-p

e
r-

d
e
liv

e
ry

TARF

Link-connectivity

(a) (b)

Fig. 8. With 6 nodes dropping data, (a) TARF has a 14% higher throughput than link-connectivity;
(b) TARF has a 5% higher hop-per-delivery than link-connectivity.

is at least 14% greater than that in link-connectivity; the hop-per-delivery in TARF is
around 5% higher than that in link-connectivity.

6 Conclusions

We propose TARF, a trust-aware routing framework for WSNs, to secure multi-hop
routing in WSNs against intruders exploiting the replay of routing information. With
the idea of trust management, TARF enables a node to keep track of the trustworthiness
of its neighbors and thus to select a reliable route. Not only does TARF circumvent those
malicious nodes misusing other nodes’ identities to misdirect network traffic, it also ac-
complishes efficient energy usage. Our implementation and simulation results indicate
that (1) the efficiency of energy usage in TARF is generally at least comparable to that
in existing protocols; (2) with the existence of traffic misdirection through “identity
theft”, TARF generally achieves a significantly higher throughput than other existing
protocols; and (3) TARF is scalable and adaptable to typical medium-scale testbed en-
vironments and simulated conditions. Our future work is to further evaluate TARF with
large-scale WSNs deployed in wild environments and to study how to choose param-
eters involved for specific applications. We believe that the idea of TARF can also be
applied to general ad hoc networks and peer-to-peer networks to fight against similar
attacks.

References

1. Al-Karaki, J., Kamal, A.: Routing techniques in wireless sensor networks: a survey. IEEE
Wireless Communications 11(6), 6–28 (2004)

2. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of
1996 IEEE Symposium on Security and Privacy, pp. 164–173 (1996)

3. Boukerche, A., El-Khatib, K., Xu, L., Korba, L.: A novel solution for achieving anonymity
in wireless ad hoc networks. In: Proceedings of the 1st ACM international workshop on Per-
formance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 30–38 (2004)



80 G. Zhan, W. Shi, and J. Deng

4. Ganeriwal, S., Balzano, L., Srivastava, M.: Reputation-based framework for high integrity
sensor networks. ACM Trans. Sen. Netw. (2008)

5. He, Q., Wu, D., Khosla, P.: Sori: A secure and objective reputation-based incentive scheme
for ad hoc networks. In: Proceedings of IEEE Wireless Communications and Networking
Conference, pp. 825–830 (2004)

6. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The eigentrust algorithm for reputation man-
agement in p2p networks. In: Proceedings of the 12th international conference on World
Wide Web, pp. 640–651 (2003)

7. Karlof, C., Sastry, N., Wagner, D.: Tinysec: A link layer security architecture for wireless
sensor networks. In: Proc. of ACM SenSys 2004 (November 2004)

8. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermea-
sures. In: First IEEE International Workshop on Sensor Network Protocols and Applications
(2003)

9. Liang, Z., Shi, W.: Pet: A personalized trust model with reputation and risk evaluation for
p2p resource sharing. In: HICSS 2005: Proceedings of the Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS 2005) - Track 7. IEEE Com-
puter Society, Los Alamitos (2005)

10. Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography in wireless
sensor networks. In: IPSN 2008: Proceedings of the 7th international conference on Infor-
mation processing in sensor networks, pp. 245–256. IEEE Computer Society, Los Alamitos
(2008)

11. Liu, Z., Joy, A., Thompson, R.: A dynamic trust model for mobile ad hoc networks. In:
Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Com-
puting Systems, pp. 80–85 (2004)

12. Matlab, http://www.mathworks.com
13. Motelab, http://motelab.eecs.harvard.edu
14. Perrig, A., Szewczyk, R., Wen, W., Culler, D., Tygar, J.: SPINS: Security protocols for sensor

networks. Wireless Networks Journal (WINET) 8(5), 521–534 (2002)
15. Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In: Proceedings

of the 3rd International Conference on Peer-to-Peer Computing, p. 150 (2003)
16. Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., Kruus, P.: Tinypk: securing sensor net-

works with public key technology. In: SASN 2004: Proceedings of the 2nd ACM workshop
on Security of ad hoc and sensor networks, pp. 59–64. ACM, New York (2004)

17. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop routing
in sensor networks. In: Proceedings of the First ACM SenSys 2003 (November 2003)

18. Wood, A., Stankovic, J.: Denial of service in sensor networks. Computer 35(10), 54–62
(2002)

19. Zhan, G., Shi, W., Deng, J.: Poster abstract: Sensortrust - a resilient trust model for wsns.
In: SenSys 2009: Proceedings of the 7th International Conference on Embedded Networked
Sensor Systems (2009)

http://www.mathworks.com
http://motelab.eecs.harvard.edu

	TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks
	Introduction
	Assumptions and Goals
	Design of TARF
	Overview
	Routing Procedure
	Structure and Exchange of Routing Information:
	Route Selection:

	EnergyWatcher
	TrustManager

	Implementation and Empirical Evaluation
	Simulation and Evaluation
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


